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Abstract— A recommendation system can provide content 

that users are likely to choose because the content provided will 

be based on filtering information that takes preferences from 

the behavior and history of the user. Recently, researchers 

researched to improve the quality of one of the 

recommendations using swarm intelligence in a collaborative 

filtering system of traditional recommendation systems. This 

study aims to determine the effect of user weighting on 

traditional recommendation systems, one of which is the swarm 

intelligence, namely the firefly algorithm, to give weights to 

users and get active users on the dataset. We conducted several 

experiments to compare the performance of our proposed 

method, including by comparing 100 users obtained from the 

weighting results. As a result, the firefly algorithm was able to 

find 100 users who had a significant influence on the prediction 

results with an MAE error value of 0.8101. Another experiment 

with a scheme using all data can give a lower MAE error value 

of 0.8007. 

Keywords— Recommendation System, Firefly Algorithm, 

Pearson Correlation Coefficient, Cosine Similarity, User 

Weighting. 

I. INTRODUCTION (HEADING 1) 

A recommendation system can provide content that users 
are likely to choose because the content provided will be based 
on filtering information that takes preferences from user 
behavior and history. The amount of data on the internet that 
continues to grow every day makes recommendation systems 
one of the indispensable requirements for personalizing users.  

Several well-known e-commerce companies have used 
recommendation systems in their systems, including YouTube, 
Amazon, Alibaba, Facebook, and others. The purpose of 
making a recommendation system is to connect customers 
with the goods to be purchased so that later it is expected that 
sales of each product can increase or save costs [1]. Not only 
that, but the Recommendation System is also the basis for 
users to perform searches such as movies, songs, restaurants, 
and other products [2]. 

Netflix is trying to grow its business enormously to 
become a market leader in the film provider market. The 
recommendation system is the core of this business. With the 
development of a recommendation system, Netflix can be 
saving over $ 1 billion annually [3]. 

Two methods are used to build a recommendation system, 
namely the Collaborative Filtering and Content-Based 
methods [1]. To date, Collaborative Filtering is the most 
successful method and is widely used in recommendation 
systems [4]. In its application, the collaborative filtering 
method requires similarity measurement. The similarity 

measure in recommendation systems is a statistical measure 
of how two users or items are related. Several traditional 
similarity techniques such as Pearson's Correlation (COR), 
Cosine Similarity (COS), Mean Squared Difference (MSD), 
and Jaccard Coefficient can be used to measure similarity [5]. 
However, this technique has several shortcomings, namely 
Cold Start, Sparsity, Scalability [6].  

Several researchers have conducted experiments to 
overcome these problems and improve the quality of the 
Recommendation System, one of which is the research 
conducted by Guibing Guo using the TrustSVD technique to 
reduce the decline in the quality of the Recommendation 
System caused by sparsity and cold start [7]. Researchers 
often use metaheuristic Swarm Intelligence (SI) techniques 
such as Cuckoo Search, Artificial Bee Colony (ABC), Particle 
Swarm Optimization, and Bat Algorithm (BA) to find optimal 
solutions [8]. Furthermore, many also use swarm intelligence 
combined with traditional recommendation systems and show 
a considerable improvement in providing recommendations 
[9].  

In this study, the authors propose a study to determine the 
effect of user weighting on traditional recommendation 
systems using the Metaheuristic Swarm Intelligence (SI) 
technique, namely Firefly Algorithm (FA). 

II. RECOMMENDER SYSTEM 

Recommendation systems are software tools and 
techniques that provide suggestions for items that the user 
will find helpful, such as what items to buy, what music to 
listen to, or what online news to read. Item is a general term 
used to indicate what the system recommends to the user. 
Recommendation systems typically focus on specific types of 
items. According to their design, graphical user interface, and 
recommendation techniques used to generate 
recommendations, all are tailored to provide valuable and 
practical suggestions for specific item types. One example is 
a book recommendation system that helps users select books 
to read and items to buy [10]. 

In the early years of the development of the internet, much 
research on recommendation systems was carried out to find 
new approaches to solve a large amount of information 
available on the internet. The approaches commonly used in 
recommendation systems are the content-based filtering and 
collaborative filtering approaches [4]. 
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A. Collaborative Filtering 

Collaborative Filtering is a recommended method that 
bases its predictions and recommendations on ratings or the 
behavior of other users on the system. The basic assumption 
behind this method is that other users' opinions can be selected 
and aggregated in such a way as to provide suitable 
predictions based on the preferences of other active users. 
Intuitively, they assume that if a user agrees about the quality 
and relevance of an item, then that user is likely to agree about 
another item. If a group of users likes the same thing, for 
example, if a group of users likes the same things as Mary, 
Mary tends to like the things they like [11]. 

There are two approaches in CF, namely model-based 
filtering (model-BF) and memory-based filtering (memory-
BF) [12]. The model-BF works by calculating the time 
between counting various items and then selecting the user 
with the most similar neighbors from the active users. The 
memory-based method or better known as neighborhood-
based, is the earliest method developed for collaborative 
filtering.  Neighborhood methods calculate how similar users 
or items are in the rating matrix. A similarity score or 
proximity measure is used to identify users and similar items. 
Commonly used similarity measures are the Cosine similarity 
and Pearson correlation coefficient. The general approach to 
neighborhood methods consists of two steps to predict ratings, 
namely [1]: 
1. Looking for the similarity between items (item-based) or 

similarity between users (user-based) who have given a 
rating.  

2. Provide a rating of user ratings or similar items. 
 
Collaborative Filtering can be defined in two ways, 

namely User Based Collaborative Filtering (UB-CF) and Item 
Based Collaborative Filtering (IB-CF) [12]. 

UB-CF is designed to find similarities from users who 
have a similar rating pattern to other users and who have rated 
the item in question. For example, if Alice and Bob have rated 
films the same way in the past, then other users can use the 
ratings that Alice observed in the Terminator films to predict 
the ratings for Bob, who did not rate the film. In general, the 
user who is most similar to Bob can make a ranking prediction 
for Bob. The similarity function is calculated between rating 
rows to find similar users [12]. Several methods can be used 
to calculate the similarity between users, such as the Pearson 
Correlation Coefficient and Cosine Similarity [13].  
 

B. Pearson Correlation Coefficient 

Pearson Correlation Coefficient (PCC) is a correlation 
search method developed by Karl Pearson. Meanwhile, 
correlation is a measurement technique that determines how 
close the relationship between two variables is. The 
measurement results of the PCC can be either positive or 
negative. A positive relationship shows that the two variables 
have a parallel (linear) increase in value. Meanwhile, a 
negative relationship shows that the two variables have a 
parallel (linear) decrease in value. The parallel is the increase 
or decrease in value that follows between two variables [14]. 
The Pearson Correlation Coefficient method can be calculated 
using the equation 1: 

 

�����, �� =  ∑ ��,� � ̅����,� � ̅���∈∁
�∑ ��,� � ̅�����,� � ̅����∈∁  �∑ ��,� � ̅�����,� � ̅����∈∁

    (1) 

 

�����, �� is the similarity value between user u and user 

v. ��,� dan ��,� is the value of user u and user v with respect to 

item i. �̅�,� dan �̅�,� is the average value of user u and user v 

against the item. 

C. Cosine Similarity 

Cosine Similarity measures the angle between two 
measured vectors where the smaller angle indicates more 
remarkable similarity and the higher angle indicates the lower 
similarity. The cosine range is 0 to 1, where a higher value 
indicates the closest similarity between users u and v [15]. 
The Cosine Similarity method can be calculated using 
equation 2: 

 

�����, ����� =  ∑ ���,�� .  ���,��   �∈!��,��
�∑ ���,��   �∈!��,�� � .  �∑ ���,��   �∈!��,�� � 

    (2) 

 

Where,�����, �� is the similarity value between user u 

and user v. "��, �� is the rating of item i given by user u. 

"��, �� is the rating of item i given by user v. #��, �� is the 
number of jointly rated items from users u and v. 

D. Firefly Algorithm 

Swarm intelligence is an evolutionary model based on 
social behavior and inspired by nature. Xin-She Yang 
developed the Firefly Algorithm (FA) at Cambridge 
University in 2007 [16]. FA is used to solve optimization 
problems. Fireflies produce short, rhythmic lights whose light 
patterns differ from one another. In the FA algorithm, fireflies 
are compared to one another. The less attractive fireflies move 
towards, the more attractive fireflies. Simply put, a firefly's 
appeal is directly proportional to the light intensity of the 
fireflies that are nearby. The equation of variation of 
attractiveness β with distance r is defined in equation 3 [17]. 

 

  $ =  $%. &�'.�
     (3) 

 

Where $% is the value of firefly attraction when r = 0 and 

is ( light absorption coefficient. 

The displacement of the firefly i, which is attracted to the 
firefly j (which is lighter), is determined by equation 4 [8]: 

 

)� =  )� +  $%. &�'.�,+� �), − )�� + .. ��/01 − 0.5�     (4) 

 

 )�  is the position of the firefly i.   $ =  $%. &�'.�
 is the 

variation of attractiveness of fireflies i and j.     ),  - )� is the 

difference between fireflies j and i.   . and �/01 is a random 
number between [0,1]. 
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III. RESEARCH METHODOLOGY 

A. Research Pipeline 

The method proposed in this study consists of several 
stages. The first stage is the retrieval of the MovieLens 1M 
dataset on the grouplens.org site. The next step is to carry out 
the preprocessing process to eliminate empty user data. The 
next step is to transform the data into a utility matrix to find 
similarities between users using the Pearson Correlation 
Coefficient (PCC). The results of the similarity matrix are 
optimized using the Firefly Algorithm to get the weight of 
each user. After the weights are obtained, the data is divided 
into training data and test data. K–Nearest Neighbor (KNN) 
used to generate rating predictions. The results evaluated 
using Mean Absolute Error (MAE) and Root Mean Squared 
Error (RMSE). The stage of this research can see in the form 
of a pipeline in Figure 1: 

 

Fig. 1. Pipeline of the research 

B. Prediction 

There are various methods for making predictions, one of 
which is K – Nearest Neighbor. KNN tries to predict the 
rating based on the nearest neighbor who has rated the item. 
Here is equation number 5 for predicting items to users: 

 
 

�̂�� =  ∑ ��5��,���∈6�7��� .��
∑ ��5��,���∈6�7���

    (5) 

 

�̂�� is rating from user u to item i. �̂�� is rating from user v 

to item i. 8 is number of users. k is number of neighbors. 

�����, �� is similarity between user u and user v. 
 

C. Evaluation Measure 

Several metrics are proposed to evaluate the effectiveness 
of a recommendation on collaborative filterings, such as 
Mean Absolute Error (MAE) and Root Mean Squared Error 
(RMSE) [14]. MAE is the method that measures the average 
difference between the predicted rating and the actual rating. 
The higher the MAE value, it indicates that the system does 
not predict well. The MAE formula is written in equation 6. 
 

    9:; =   Σ�=1
0 ?@��/�?

0        (6) 

 

It is different from RMSE, which measures the accuracy 
of the prediction results by squaring the error value and 
dividing it by the amount of data. This value is then rooted. 
We can see the formula for calculating RMSE in equation 7. 

 

"9A; =  � B�=CD |F��G�|�
H     (7) 

 

n is the total of all rating data calculated by RMSE. /� is 

the actual rating given by the user. @�is the rating predicted 
by the recommendation system. 

 

IV. RESULT AND DISCUSSION 

This study uses available dataset movies on the site 
https://grouplens.org/datasets/movielens/1m/. In the dataset, 
there are 1,000,209 rating data on movies given by 6040 users 
on 3883 films. The rating provided by the user is a number on 
a scale of 1 to 5 for each item or film. Table 1 describes the 
distribution of the data used: 

TABEL 1: DATA DISTRIBUTION 

Dataset Distribution 

MovieLens 1M 
User Item Rating 

6040 3883 1.000.209 

 
Experiments were carried out using three schemes: 

observing the number of users, observing the amount of 
training data, and observing using item-based or user-based.  

Observations on the number of users were carried out to 
see if there was an effect on the number of active users with 
the resulting accuracy. The accuracy measurement value used 
is the average value of MAE and RMSE from cross-validation 
results using a different number of users in each experiment, 
namely 100, 200, 300, and 6040 users.  

The Firefly algorithm generates active users from the 
dataset, where each user will have their weight value in the 
first scheme. This weight value is then added to the user 
similarity calculation process by the Pearson correlation 
coefficient and Cosine similarity method. 

Figures 2. and 3. show the results of calculating the MAE 
and RMSE values in the first scheme. The number of users is 
200 and 300, resulting in MAE and RMSE values that are not 
significantly different. However, for 100 users, the addition 
of the firefly method on PCC and cosine resulted in better 
MAE values, namely 0.8252 and 0.8101. Likewise, the 
RMSE value that uses the addition of the firefly method on 
active user searches produces better values, namely 1.0482, 
1.0301. The resulting weighting for the first 100 users can 
reduce the MAE value by 0.07 and RMSE by 0.09. However, 
if you look closely, you can see that the MAE and RMSE 
values decrease, which are consistent in the PCC and 
COSINE methods with the increasing number of users. This 
consistency is not seen in the method that uses the Firefly 
method for active users, where the lowest error value is 0.79 
when using all users in the dataset.  
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The KNN method requires the nearest neighbor value to 
calculate the similarity value search process. The experiment 
was carried out by comparing the error values in the number 
of different nearest neighbors, namely k = 10, 20, 30, 40, and 
50. The results of this experiment can be seen in Figures 5 
and 6. The error value obtained in the experiment shows that 
the number of k affects the data a lot. Tests using the number 
of users 100, 200, 300 do not offer many different effects. 

 

Fig. 2. Comparison of MAE values of 100, 200, 300,6040 users. 

 

  

Fig. 3. Comparison of RMSE values of 100, 200, 300, 6040 users. 

 

Fig. 5. Comparison of MAE values for k = 10, 20, 30, 40, 50 

 

 

Fig. 6. Comparison of RMSE values for k = 10, 20, 30, 40, 50 

The second testing scheme is carried out to determine the 
effect of the amount of training data on the resulting 
recommendations. Using the number of users as many as 
6040, the error value is not much different at the percentage 
of training data 80% and 90%. 

 

Fig. 8. Comparison of MAE values from the amount of training data 

Fig. 9. Comparison of RMSE values from the amount of training data 
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We can look for similarities between users (User-based) or 
between items (Item-based) in the Collaborative Filtering 
method. The third test scheme is carried out to determine 
whether there is an influence from the use of user-based or 
item-based. Figures 11 and 12 show the error values obtained 
from the experiments carried out. The use of user-based 
collaborative filtering resulted in lower MAE and RMSE error 
values than item-based. The difference in MAE values is 0.04, 
while for the RMSE, there is a difference of 0.01. 

Fig. 11. comparison of RMSE values for FA and traditional methods in 
user-based and item-based collaborative filtering 

 

Fig. 12. comparison of MAE values for FA and traditional methods in user-
based and item-based collaborative filtering 

V. CONCLUSION 

Firefly algorithm successfully weights active users. The 
difference between the MAE and RMSE error values with 
experiments of 100, 200, 300, and 6040 users did not produce 
a significant difference with the traditional method. The 
number of K in KNN does not affect the calculation of MAE 
and RMSE errors in small data. Data with 100, 200, 300 users 
does not show much different error values. But when using 
6040 users or all data, the number of K affects the calculation 
of MAE and RMSE errors. By experiment using the number 
of K = 30, which gives a reasonably high effect. The 
experimental results on the distribution of training and testing 
data do not affect the calculation of MAE and RMSE errors. 
The use of User-based and Item-based Collaborative Filtering 
can affect the analysis of MAE and RMSE errors. From the 
tests carried out, User-based produces a lower error value 
than Item-based. The difference in MAE error reaches 0.04. 
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